ABB SAFT 125 CHC
变频高速器的出现为交流异步电动机的调速方式带来了一场革命。随着近十几年变频技术的不断完善、发展,变频调速性能日趋完美,已被不同学科、不同行业的工程技术人员广泛应用于不同领域的调速。为企业带来了可观的经济效益,推动了工业生产的自动化进程。水泥制造业是建材业中的能耗大户,降低能源消耗,提高产品质量是提高企业竞争能力和经济效益的重要措施。节能降耗已成为每个企业管理者所关心的重点。
某水泥集团拥有三条水泥生产线,年产水泥400万吨以上,工程设计初期生产线上的排风机是定速运行,其风量调节依靠档板开度来控制。考虑产量变化及生产品种的变化,需要不同的风量来满足工艺要求。采用档板调节,不但控制精度较差,并且依靠档板截流来减少风量,电机的出力变化较小,造成大量电能被白白浪费;为了改善工艺、降低能耗,某水泥集团的设计人员决定对其排风机进行变频调速改造,生产中风量的调整通过变频器来改变排风机转速实现。
现场工艺简介
1. 水泥生产工艺
水泥的生产步骤,可分为以下八个步骤:
原料的提取(采矿)——原料的破碎——原料的储存和预均化——原料的粉磨(球磨机)——生料的均化和储存——煅烧(生料通过旋风筒预热后再进入回转窑烘烤物料,煅烧成熟料)——水泥的粉磨(根据水泥的品质,混合其他的化学原料粉磨)——水泥 的储存与运输
2、物料的粉磨工艺流程:
电动机通过减速机带动磨盘转动,物料从下料口落到磨盘中央,在离心力的作用下向磨盘边缘移动并受到磨辊的碾压,粉碎后的物料离开磨盘,被高速向上的气流带至与立磨一体的分离器,粗粉经分离器后返回到磨盘上,重新粉磨;细粉则随气流出磨,在系统的收尘装置中收集下来。收尘风机的转速(收尘器所需风量)主要由管磨机内工艺情况(产量及粉的细度)决定。
水泥粉磨系统主要设备
3、水泥生产工艺图
HINV型高压变频装置原理
变频装置采用多电平串联技术,6KV系统结构见图2,由移相变压器、功率单元和控制器组成。6KV系列有15个功率单元,每5个功率单元串联构成一相。
每个功率单元结构以及电气性能完全一致,可以互换,其电路结构见图3,为基本的交-直-交单相逆变电路,整流侧为二极管三相全桥,通过对IGBT逆变桥进行正弦PWM控制,可得到如图4所示的波形。
图2 高压变频调速系统结构图
图3功率单元电路结构
每个功率单元结构上完全一致,可以互换,其电路结构见图3,为基本的交-直-交单相逆变电路,整流侧为二极管三相全桥,通过对IGBT逆变桥进行正弦PWM控制,可得到如图4所示的波形。
图4 单元输出的PWM波形
输入侧由移相变压器给每个单元供电,移相变压器的副边绕组分为三组,构成30脉冲整流方式;这种多级移相叠加的整流方式可以大大改善网侧的电流波形,使其负载下的网侧功率因数接近1。
另外,由于变压器副边绕组的独立性,使每个功率单元的主回路相对独立,每个功率单元等效为一台单相低压变频器。
输出侧由每个单元的U、V输出端子相互串接成星型接法直接给高压电机供电,通过对每个单元的PWM波形进行重组,可得到如图5所示的阶梯正弦PWM波形。这种波形正弦度好,dv/dt小,可减少对电缆和电机的绝缘损坏,无须输出滤波器就可以使输出电缆长度很长,电机不需要降额使用,可直接用于旧设备的改造;同时,电机的谐波损耗大大减少,消除了由此引起的机械振动,减小了轴承和叶片的机械应力。
当某一个单元出现故障时,通过使图3中的软开关节点K导通,可将此单元旁路出系统而不影响其他单元的运行,变频器可持续降额运行,可减少很多场合下停机造成的损失